Journal of Organometallic Chemistry, 367 (1989) C25-C28 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 9917PC

Preliminary communication

Studies of oxidative addition-reductive elimination reactions, and the crystal structure of the palladium(IV) complex $Me_2(p-BrC_6H_4CH_2)Pd(phen)Br$

Allan J. Canty, Andrew A. Watson,

Chemistry Department, University of Tasmania, Hobart, Tasmania 7001 (Australia)

Brian W. Skelton and Allan H. White

Department of Physical and Inorganic Chemistry, University of Western Australia, Nedlands, W.A. 6009 (Australia)

(Received January 2nd, 1989)

Abstract

Selectivity in reductive elimination of ethane and RMe has been observed for benzyl and phenacyl complexes $Me_2RPd(L_2)Br$ ($L_2 = bipy$, phen), with product ratios dependent upon R and L_2 , and cationic intermediates detected by ¹H NMR spectroscopy for oxidative addition of CD₃I and phenacyl bromides to $Me_2Pd(L_2)$. The crystal structure of *fac*-Me₂(*p*-BrC₆H₄CH₂)Pd(phen)Br has been determined.

Oxidative addition and reductive elimination reactions are of fundamental importance in organometallic chemistry and catalysis, and the recent development of hydrocarbylpalladium(IV) chemistry provides a new system for the study of such reactions under mild conditions [1]. The reagents p-XC₆H₄CH₂Br (X = H, Br, NO₂) and p-XC₆H₄COCH₂Br (X = H, Br) react with the 2,2'-bipyridyl and 1,10-phenanthroline complexes, Me₂Pd(L₂), in acetone at 0 °C to form Me₂RPd(L₂)Br (satisfactory C, H, N analyses). Crystals of Me₂(p-BrC₆H₄CH₂)Pd(phen)Br, C₂₁H₂₀Br₂N₂Pd, are monoclinic *, M = 566.6, space group $P2_1/n$, with a 8.465(2), b 9.051(2), c 26.364(6) Å, β 96.75(2)°, Z = 4. 2399 'observed', absorption-corrected diffractometer reflections to $2\theta_{max}$ 50° (Mo- K_{α} radiation) were refined by full-matrix least squares to R = 0.034. The benzyl group is *trans* to the bromine atom (Fig.

^{*} The atomic coordinates, bond lengths and angles, and thermal parameters have been deposited with the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW (Great Britain). Any request for them should be accompanied by a full literature citation for this communication.

Fig. 1. A molecular projection for fac-[Me₂(p-BrC₆H₄CH₂)Pd(phen)Br] showing selected atom numbering; 20% thermal ellipsoids are shown for the non-hydrogen atoms, and hydrogen atoms (constrained at estimated idealized positions) have been given an arbitrary radius of 0.1 Å. Selected bond distances and angles: Pd-C(a,b,c) 2.033(7), 2.033(7), 2.091(6) Å, Pd-N(a,b) 2.191(4), 2.198(5) Å, Pd-Br 2.636(1) Å, C(a)-Pd-C(b,c) 85.1(3), 89.2(3)°, C(b)-Pd-C(c) 84.6(3)°, C(a)-Pd-N(a,b) 173.2(3), 97.2(3)°, C(b)-Pd-N(a,b) 101.6(2), 177.6(2)°, C(c)-Pd-N(a,b) 90.2(2), 95.8(2)°, Br-Pd-C(a,b,c) 91.9(2), 90.4(2), 174.8(2)°, Br-Pd-N(a,b) 89.3(1), 89.2(1)°, N(a)-Pd-N(b) 76.1(2)°.

1), and the Pd-CH₂ bond length is 2.091(6) Å, ca. 0.03 Å longer than that of Pd-CH₃ in the same complex, and in the only two organopalladium(IV) complexes examined crystallographically [1,2], both containing the simple *fac*-Me₃Pd unit. The Pd-Br bond length, 2.636(1) Å, appears to be the determination of a Pd^{IV}-Br bond length [3,13].

Selectivity in reductive elimination reactions from $R_2 R' P d^{IV}$ centres occurs in some catalytic reactions, e.g. in the synthesis of hexahydromethanotriphenylenes [4], and although the large majority of coupling reactions employing palladium catalysts involve Pd⁰-Pd¹¹ cycles [5], Pd^{1V} intermediates have been implicated in some processes, e.g. in methyl-methyl and methyl-benzyl coupling [6]. Slow warming of the complexes Me₂RPd(L₂)Br in (CD₃)₂CO to 40 °C cleanly generates RPd(L₂)Br + MeMe, and MePd(L_2)Br + RMe, although the high selectivity for ethane evolution in most reactions and the complexity of some spectra rendered detection of RMe uncertain in some cases. The product distribution depends on both R and L_2 , with $Me_2(p-XC_6H_4CH_2)Pd(bipy)Br$ (X = H, Br, NO₂) giving exclusively $RPd(bipy)Br + MeMe [7^*, 9^*], Me_2(p-XC_6H_4CH_2)Pd(phen)Br giving RPd(phen)Br$ and MePd(phen)Br in ca. 3/1 ratio, Me₂(p-BrC₆H₄COCH₂)Pd(L₂)Br giving $\operatorname{RPd}(L_2)$ Br and $\operatorname{MePd}(L_2)$ Br in ca. 5/1 ratio (bipy) and ca. 2/1 ratio (phen), and $Me_2(C_6H_3COCH_2)Pd(L_2)Br$ giving $RPd(L_2)Br$ and $MePd(L_2)Br$ in ca. 3/1 ratio (bipy) and ca. 1/1 ratio (phen) [10*]. The reactions strongly favour ethane elimination, more so with the bipy than the phen complexes, since a random loss of MeMe and RMe would give a 1/2 ratio for RPd(L₂)Br/MePd(L₂)Br.

^{*} Reference numbers with asterisks indicate notes in the list of references.

Fig. 2. ¹H NMR spectra obtained on addition of an excess of p-BrC₆H₄COCH₂Br to Me₂Pd(bipy) in (CD₃)₂CO at -5° C, followed by warming to 20°C, showing selected assignments, with peaks for the unchanged reagent in italics. The major cationic intermediate clearly shows two H(6)(bipy), MePd, and CH₂ resonances. The peaks for them are marked, minor cation is below the spectrum at -5° C. The stable neutral product (20°C) has the MePd resonance close to acetone, but this resonance is clearly identified in CDCl₃ for the isolated complex. *Indicates an impurity.

Spectroscopic detection of cationic intermediates in S_N^2 oxidative additions appears to be limited to Me₂Pt^{II} systems [11]. In studies at -5° C with Me₂Pd(bipy) and the phenacyl bromides, the ¹H NMR spectra (e.g. Fig. 2) show the stable neutral product as a minor species, together with two intermediates, one in trace amount, and both intermediates (assumed " $fac-C_3Pd$ " octahedral) have the phenacyl group trans to a bipy nitrogen. They have MePd resonances upfield from the neutral product, as expected for cations [12*], and on warming to ca. 20°C only the stable product with the phenacyl group *trans* to bromine is observed, and the spectrum is unaltered on recooling. Kinetic studies indicate that MeI and PhCH₂Br react with $Me_2M(L_2)$ (M = Pd, Pt) by the $S_N 2$ mechanism [8], and we have now found that at -50 °C CD₃I forms an intermediate cation [Me₂(CD₃)- $Pd(ibpy)((CD_3)_2CO)]^+$ [12*], with spectra similar to that reported for the Pt^{IV} cation [11], except that the Me and CD_3 groups are scrambled, reflecting more rapid isomerization for palladium. The $S_N 2$ mechanism is expected to give R (or CD₃) trans to $(CD_3)_2CO$ and cis to bipy, as observed for platinum [11], and thus for more labile palladium, the major intermediate observed on oxidative addition of phenacyl bromides to Me₂Pd(bipy), with R trans to bipy, is assumed to be the most stable isomer for the cation. The major cation may be stabilized by intramolecular coordination of the carbonyl group, $[Me_2(R-C,O)Pd(bipy)]^+$, rather than $(CD_3)_2CO$ coordination, $[Me_2RPd(bipy)((CD_3)_2CO)]^+$, since oxidative addition of the benzyl bromides show only traces of one cation (benzyl cis to bipy) at low temperature.

Acknowledgements. We thank the Australian Research Council and the University of Tasmania for financial support, and Johnson Matthey Ltd for a loan of palladium chloride.

References and notes

- 1 P.K. Byers, A.J. Canty, B.W. Skelton, and A.H. White, J. Chem. Soc., Chem. Commun., (1986) 1722.
- 2 P.K. Byers, A.J. Canty, B.W. Skelton, and A.H. White, J. Chem. Soc., Chem. Commun., (1987) 1093.
- 3 See, e.g. L.R. Gray, D.J. Gulliver, W. Levason, and M. Webster, J. Chem. Soc., Dalton Trans., (1983) 133.
- 4 M. Catellani and G.P. Chiusoli, J. Organomet. Chem., 346 (1988) C27.
- 5 See, e.g. J.M. Brown and N.A. Cooley, J. Chem. Soc., Chem. Commun., (1988) 1345, and ref. therein.
- 6 D. Milstein and J.K. Stille, J. Am. Chem. Soc., 101 (1979) 4981, 4992; A. Gillie and J.K. Stille, ibid., 102 (1980) 4933; A. Moravskiy and J.K. Stille, ibid., 103 (1981) 4182.
- 7 With the extreme and less comparable approach of heating solid samples of $Me_2(PhCH_2)Pd(L_2)Br$ to the decomposition temperatures of ca. 145 °C (bipy) and 120 °C (phen), a less pronounced preference for ethane evolution is found [8].
- 8 K.-T. Aye, A.J. Canty, M. Crespo, R.J. Puddephatt, J.D. Scott, and A.A. Watson, Organometallics, in press.
- 9 The unstable complex Me₂(PhCH₂)Pd(tmeda)Br, detected at low temperature by NMR spectroscopy, also loses ethane exclusively (W. de Graaf, J. Boersma, D. Grove, A.L. Spek, and G. van Koten, Rec. Trav. Chim. Pays-Bas, 107 (1988) 299).
- 10 These two complexes also give a small amount of MeBr (2.70 ppm, partially removed by later purging with N₂ for ca. 30 sec), together with a transient resonance at 0.47 (bipy) and 0.61 ppm (phen). These resonances are assigned to unstable $Me(C_6H_5COCH_2)Pd(L_2)Br$ since the MePd resonance of the bipy complex occurs 0.14 ppm upfield from the phen complex, exactly as found for $Me_2Pd(L_2)$.
- 11 M. Crespo and R.J. Puddephatt, Organometallics, 6 (1987) 2548, and ref. therein.
- 12 [Me₃Pd(bipy)((CD₃)₂CO)]⁺ has δ (MePd) at 1.61 and 0.82 ppm (2/1 ratio), upfield from Me₃Pd(bipy)I (1.77 and 1.11 ppm (2/1 ratio)) at -50 °C, but is completely converted into the latter on warming to ca. 0 °C.
- 13 Note added in proof: [(CH₂NH₃)₂][PdBr₆] has Pd-Br 2.466(3) and 2.470(3) Å (R.J.H. Clark, V.B. Croud, H.M. Dawes and M.B. Hursthouse, Polyhedron, 24 (1988) 2611).